Environment-conscious scheduling of HPC applications on distributed Cloud-oriented data centers
نویسندگان
چکیده
The use of High Performance Computing (HPC) in commercial and consumer IT applications is becoming popular. HPC users need the ability to gain rapid and scalable access to high-end computing capabilities. Cloud computing promises to deliver such a computing infrastructure using data centers so that HPC users can access applications and data from a Cloud anywhere in the world on demand and pay based on what they use. However, the growing demand drastically increases the energy consumption of data centers, which has become a critical issue. High energy consumption not only translates to high energy cost which will reduce the profit margin of Cloud providers, but also high carbon emissions which are not environmentally sustainable. Hence, there is an urgent need for energy-efficient solutions that can address the high increase in the energy consumption from the perspective of not only the Cloud provider, but also from the environment. To address this issue, we propose near-optimal scheduling policies that exploit heterogeneity across multiple data centers for a Cloud provider. We consider a number of energy efficiency factors (such as energy cost, carbon emission rate, workload, and CPU power efficiency) which change across different data centers depending on their location, architectural design, and management system. Our carbon/energy based scheduling policies are able to achieve on average up to 25% of energy savings in comparison to profit based scheduling policies leading to higher profit and less carbon emissions. © 2010 Elsevier Inc. All rights reserved.
منابع مشابه
An Efficient Scheduling of HPC Applications on Geographically Distributed Cloud Data Centers
Cloud computing provides a flexible infrastructure for IT industries to run their High Performance Computing (HPC) applications. Cloud providers deliver such computing infrastructures through a set of data centers called a cloud federation. The data centers of a cloud federation are usually distributed over the world. The profit of cloud providers strongly depends on the cost of energy consumpt...
متن کاملData Replication-Based Scheduling in Cloud Computing Environment
Abstract— High-performance computing and vast storage are two key factors required for executing data-intensive applications. In comparison with traditional distributed systems like data grid, cloud computing provides these factors in a more affordable, scalable and elastic platform. Furthermore, accessing data files is critical for performing such applications. Sometimes accessing data becomes...
متن کاملImproving the palbimm scheduling algorithm for fault tolerance in cloud computing
Cloud computing is the latest technology that involves distributed computation over the Internet. It meets the needs of users through sharing resources and using virtual technology. The workflow user applications refer to a set of tasks to be processed within the cloud environment. Scheduling algorithms have a lot to do with the efficiency of cloud computing environments through selection of su...
متن کاملEnergy-Efficient Scheduling of HPC Applications in Cloud Computing Environments
The use of High Performance Computing (HPC) in commercial and consumer IT applications is becoming popular. They need the ability to gain rapid and scalable access to high-end computing capabilities. Cloud computing promises to deliver such a computing infrastructure using data centers so that HPC users can access applications and data from a Cloud anywhere in the world on demand and pay based ...
متن کاملFramework for Enhancing the Performance of Data Intensive MPI based HPC applications on Cloud
Corresponding Author: Ashwini Janagal Padmanabha Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India Email: [email protected] Abstract: Cloud computing is a new technology which is revolutionizing the current business model with pay-per-usage resource provisioning method. This model proves to be more profitable compared to traditional resource procurement and maintenanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Parallel Distrib. Comput.
دوره 71 شماره
صفحات -
تاریخ انتشار 2011